
 1

Population genomics of virulence genes of Plasmodium
falciparum in clinical isolates from Uganda.	

Shazia Ruybal-Pesántez*1,2, Kathryn E. Tiedje*1,2, Gerry Tonkin-Hill3, Thomas Rask1,2, Moses R.
Kamya4, Bryan Greenhouse5, Grant Dorsey5, Michael F. Duffy 1, and Karen P. Day**1,2	

1 School of BioSciences, Bio21 Institute/University of Melbourne, Melbourne, AU
2 Department of Microbiology, New York University, New York, USA
3 Walter and Eliza Hall Institute, Melbourne, AU
4 School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
5 Department of Medicine, University of California, San Francisco, USA
	
*	Co-first	authors.		
**Corresponding	author.	

 2

	
SUPPLEMENTARY	INFORMATION	
	

	
Figure	S1.	Proportion	of	a)	upsA	DBLα	types	and	b)	upsB/upsC	DBLα	types	appearing	1	to	10	or	more	times	
within	and	among	all	sentinel	sites.	

 3

	

	
Figure	S2.	Cumulative	diversity	curves	within	and	among	all	six	sentinel	study	sites	in	Uganda;	plotting	the	
number	of	var	DBLα	sequences	sampled	against	the	number	of	observed	var	DBLα	types.	A	DBLα	type	was	
defined	by	a	96%	sequence	identity	threshold	and	corresponds	to	a	unique	DBLα	sequence.	The	color	of	the	
lines	indicate	as	follows:	Black	=	All	Sites,	Green=Kanungu;	Red=Jinja;	Orange=Kyenjojo;	Taupe=Arua;	
Blue=Tororo;	Purple=Apac.	
	

 4

	

	
Figure	S3.	Cumulative	diversity	curves	within	and	among	all	six	sentinel	study	sites	in	Uganda;	plotting	the	
number	of	var	DBLα	sequences	sampled	against	the	number	of	observed	var	DBLα	types	for	A.	upsA	DBLα	
types	and	B.	upsB/upsC	DBLα	types.	The	color	of	the	lines	indicate	as	follows:	Black	=	All	Sites,	
Green=Kanungu;	Red=Jinja;	Orange=Kyenjojo;	Taupe=Arua;	Blue=Tororo;	Purple=Apac.	

 5

	

	
	
Figure	S4.	The	frequency	distribution	of	the	proportion	of	pairwise	comparisions	within	particular	PTS	score	
ranges	within	A.	Kanungu	B.	Jinja	C.	Kyenjojo	D.	Arua	E.	Tororo	F.	Apac	and	G.	among	all	sites.	The	upsA	
proportions	are	represented	by	the	use	of	lighter	color	tones,	whereas	the	upsB/upsC	proportions	are	
indicated	by	darker	color	tones.	

 6

	
Figure	S5.	Proportion	of	type	sharing	(PTS)	of	upsA	and	upsB/upsC	DBLα	types	between	each	of	the	six	
Ugandan	sentinel	sites	was	compared	to	the	distance	between	the	sites	using	the	A.	bird	flight	and	B.	road	
distance.		

 7

	
	
Table	S1.	Var	DBLα	richness	estimates	by	sentinel	study	site.		
Study	Sites	 Chao2	richness		

estimate	(95%	CI)	
Proportion	of	total	

DBLα	types	sampled
	a
	

	

ICE	richness	
estimate	

Jackknife2	
richness	
estimate	

Kanungu	 8,278	(7,668-8,968)	 0.364	 9,536	 7,031	

Jinja	 19,364	(18,236-20,598)	 0.315	 22,459	 14,742	
Kyenjojo	 11,914	(11,190-12,715)	 0.371	 13,549	 10,270	

Arua	 23,366	(22,108-24,731)	 0.315	 27,045	 17,653	

Tororo	 20,879	(19,828-22,017)	 0.348	 24,709	 17,125	

Apac	 20,801	(19,592-22,120)	 0.309	 23,726	 15,474	
All	Sites	 41,345	(40,376-42,363)	 0.511	 44,092	 42,207	

a	Calculated	by	the	following	formula:	proportion	DBLα	types	sampled=	total	no.	DBLα	types/Chao2	richness	estimate.			
	
Table	S2.	Distances	between	sentinel	study	sites.	
Site	1	 Site	2	 Bird’s	flight	

distance	(km)	
Road	
distance	(km)	

Jinja	 Tororo	 112.41	 130	
Jinja	 Apac	 187.67	 278	

Kyenjojo	 Kanungu	 199.54	 279	

Apac	 Arua	 212.98	 285	
Tororo	 Apac	 232.24	 307	
Kyenjojo	 Apac	 260.21	 310	
Kyenjojo	 Arua	 267.56	 325	
Jinja		 Kyenjojo	 288.1	 449	
Jinja	 Arua	 383.48	 453	
Tororo	 Kyenjojo	 395.82	 497	
Jinja	 Kanungu	 409.55	 524	
Tororo	 Arua	 444.78	 548	
Kanungu	 Apac	 446.93	 589	
Kanungu	 Arua	 460	 625	

	

Supplementary Text 1 - DBLa HMMER domain
identification

Libraries

library(data.table)
library(ggplot2)
library(stringr)
library(dplyr)

Here we show that the hidden Markov model approach using HMMER accurately classifies the DBLa reads
into either UPS type A or a combined category of UPS types B and C.

First we determine the average read length in order to simulate reads to align.
from mungo.fasta import FastaReader
import numpy as np

l=[]
for h,s in FastaReader("./uganda_454_reads.fasta"):

l.append(len(s.replace("-","")))

np.mean(l)/3

The mean read length was found to be approximately 370 base pairs giving an equivalent protein length of
approximately 123aa.

We made use of cross validation to determine the accuracy of the HMMER hidden Markov models in
classifying DBLa reads. Simulated translated protein reads were generated from each domain in the HMMER
model database (Rask et al, 2010). A new HMMER model database was then created excluding this domain.
Finally, the simulated protein reads were aligned to the new HMMER model database.

In the manuscript we translate the DNA reads into all 6 frames and take the best hit. As it was deemed very
unlikely that the incorrect reading frame would give a higher classification score we did not simulate from
DNA.
mkdir temp_output

The python code below implements the cross validation procedure.
from mungo.fasta import FastaReader
import glob
import random
import os, sys
from subprocess import check_call

OUTDIR = "temp_output/"
READ_LENGTH=123

def sampleReads(string, length):
#Deal with short domains

while(len(string)<length):
length = length-50

1

nStart = random.choice(range(len(string)-length))
return string[nStart:(nStart+length)]

def makeHMMER_withoutDomain(MSA, domain):
domain_class = os.path.splitext(os.path.basename(MSA))[0]
new_msa_file = OUTDIR + domain_class + "MSA.fasta"
with open(new_msa_file, �w�) as outfile:

for h,s in FastaReader(MSA):
if h==domain:

print "REMOVING"
continue

outfile.write(">"+h+"\n"+s+"\n")
check_call("hmmbuild " + OUTDIR + domain_class + ".hmm " + new_msa_file

, shell=True)

for msa in glob.glob("./MSA_alignments/*.fasta"):
domain_class = os.path.splitext(os.path.basename(msa))[0]
cmd = "hmmbuild " + OUTDIR + domain_class + ".hmm " + msa
print cmd
check_call(cmd, shell=True)

for msa in glob.glob("./MSA_alignments/*.fasta"):
if not "DBLa" in msa: continue #only simulate DBLa reads

for h,s in FastaReader(msa):
dom_filename = h
dom_filename = dom_filename.replace(" ", "_")
dom_filename = dom_filename.replace("/", "")
seq = s.replace("-","")
if len(seq)<10:

print msa,h,s
#Sample 10 artificial reads from domain

sample_reads = OUTDIR + dom_filename + "_sampleReads.fasta"
with open(sample_reads, �w�) as outfile:

for i in range(10):
outfile.write(">read"+str(i)+"_"+dom_filename+"\n"+ sampleReads(seq, READ_LENGTH) + "\n")

#Make new hmmer file excluding domain h

makeHMMER_withoutDomain(msa, h)
#concatenate hmmer files for search

cmd = "cat " + OUTDIR + "*.hmm > " + OUTDIR + "combined.ALLhmm"
print cmd
check_call(cmd , shell=True)
#Now search artificial reads against hmmer models

cmd = ("hmmsearch --tblout " + OUTDIR + dom_filename + "_hmmSearch.txt"
+ " -E 1e-8 --nonull2 --nobias "
+ OUTDIR + "combined.ALLhmm "
+ sample_reads + " > /dev/null")

print cmd
check_call(cmd, shell=True)
#Remake oringinal hmmer for this MSA

domain_class = os.path.splitext(os.path.basename(msa))[0]
check_call("hmmbuild " + OUTDIR + domain_class + ".hmm " + msa + " > /dev/null"

, shell=True)

2

Summarise results

We now collect the results and take the best hit of each read to the HMMER model database as it’s
classification. We can then compare the accuracy of the classification at the sub-domain, domain and Type
level.
files <- Sys.glob("./temp_output/*_hmmSearch.txt")
search_data <- do.call(rbind, lapply(files, function(f) fread(paste("grep -v ^# ",

f, sep = ""))))
colnames(search_data) <- c("target name", "accession_t", "query name", "accession_q",

"E-value1", "score1", "bias1", "E-value2", "score2", "bias2", "exp", "reg",
"clu", "ov", "env", "dom", "rep", "inc", "description of target")

search_data <- search_data[order(search_data$�E-value1�, decreasing = FALSE),
]

search_data <- search_data[!duplicated(search_data$�target name�),]
search_data$domain <- str_split_fixed(search_data$�target name�, "_", 3)[, 2]
search_data$hmmerHit <- gsub("MA_", "", search_data$�query name�)
search_data$hmmerHit <- gsub("MSA", "", search_data$hmmerHit)

search_data$matchSubDomain <- search_data$domain == search_data$hmmerHit
search_data$matchDomain <- gsub("\\..*", "", search_data$domain) == gsub("\\..*",

"", search_data$hmmerHit)
search_data$domain_name <- gsub("\\..*", "", search_data$domain)
search_data$type[grepl("DBLa1", search_data$domain_name)] <- "A"
search_data$type[!grepl("DBLa1", search_data$domain_name)] <- "BC"

search_data$typeInferred[grepl("DBLa1", search_data$hmmerHit)] <- "A"
search_data$typeInferred[!grepl("DBLa1", search_data$hmmerHit)] <- "BC"

search_data$typeMatch <- search_data$typeInferred == search_data$type

subdomain_summary <- search_data %>% group_by(domain) %>% summarise(count = n(),
match = sum(matchSubDomain), accuracy = sum(matchSubDomain)/n())

domain_summary <- search_data %>% group_by(domain_name) %>% summarise(count = n(),
match = sum(matchDomain), accuracy = sum(matchDomain)/n())

type_summary <- search_data %>% group_by(type) %>% summarise(count = n(), match = sum(typeMatch),
accuracy = sum(typeMatch)/n())

Plot results

Sub-domain level

Although we do not make use of the sub-domain classification it is included here for interest sake. As the
sub-domains are often very similar the accuracy in classification with short reads is lower being 60.6% on
average. This is low in part because some domain classes have very few domains from which to build the
HMMER model. Consequently, when removing a domain in the cross validation procedure we can have a
large impact on its respective HMMER model.
gg <- ggplot(subdomain_summary, aes(x = domain, y = accuracy)) + geom_col()
gg <- gg + theme_bw()

3

gg <- gg + theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.5))
gg

0.00

0.25

0.50

0.75

D
BL
a0
.1

D
BL
a0
.1
0

D
BL
a0
.1
1

D
BL
a0
.1
2

D
BL
a0
.1
3

D
BL
a0
.1
4

D
BL
a0
.1
5

D
BL
a0
.1
6

D
BL
a0
.1
7

D
BL
a0
.1
8

D
BL
a0
.1
9

D
BL
a0
.2

D
BL
a0
.2
0

D
BL
a0
.2
1

D
BL
a0
.2
2

D
BL
a0
.2
3

D
BL
a0
.2
4

D
BL
a0
.3

D
BL
a0
.4

D
BL
a0
.5

D
BL
a0
.6

D
BL
a0
.7

D
BL
a0
.8

D
BL
a0
.9

D
BL
a1
.1

D
BL
a1
.2

D
BL
a1
.3

D
BL
a1
.4

D
BL
a1
.5

D
BL
a1
.6

D
BL
a1
.7

D
BL
a1
.8

D
BL
a2

domain

ac
cu
ra
cy

Domain level

At the higher domain levels (DBLa0, 1 and 2) the accuracy is much better due to the greater di�erentiation
between the domain classes giving an accuracy of 99.3%, 98.6% and 75.8% respectively.
gg <- ggplot(domain_summary, aes(x = domain_name, y = accuracy)) + geom_col()
gg <- gg + theme_bw()
gg <- gg + theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.5))
gg <- gg + xlab("domain")
gg

4

0.00

0.25

0.50

0.75

1.00

D
BL
a0

D
BL
a1

D
BL
a2

domain

ac
cu
ra
cy

Type level

From the supplementary figure 5 of Rask et al 2010 it can be seen that 4/169 DBLa1 occurrences occurred in
UPS type A var genes. Whilst DBLa0 and DBLa2 types occur only in UPS types B and C. From the DBLa
sequence it is not possible to distinguish the B and C types. After collapsing the reads into two categories (A
and BC) we can see that the classification accuracy is 98.6% and 99.8% respectively.
gg <- ggplot(type_summary, aes(x = type, y = accuracy)) + geom_col()
gg <- gg + theme_bw()
gg <- gg + theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.5))
gg <- gg + xlab("domain")
gg

5

0.00

0.25

0.50

0.75

1.00

A

BC

domain

ac
cu
ra
cy

If we assume that 4/169 of the DBLa classifications are incorrect as not all DBLa1 tags are associated with
Type A this reduces the Type A classification accuracy down to 96.2%.

Session Information

sessionInfo()

R version 3.4.1 (2017-06-30)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: OS X El Capitan 10.11.4
##
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib
##
locale:
[1] en_AU.UTF-8/en_AU.UTF-8/en_AU.UTF-8/C/en_AU.UTF-8/en_AU.UTF-8
##
attached base packages:
[1] stats graphics grDevices utils datasets methods base
##
other attached packages:
[1] bindrcpp_0.2 dplyr_0.7.2 stringr_1.2.0 ggplot2_2.2.1
[5] data.table_1.10.4
##
loaded via a namespace (and not attached):

6

[1] Rcpp_0.12.12 bindr_0.1 knitr_1.16 magrittr_1.5
[5] munsell_0.4.3 colorspace_1.3-2 R6_2.2.2 rlang_0.1.1
[9] plyr_1.8.4 tools_3.4.1 grid_3.4.1 gtable_0.2.0
[13] htmltools_0.3.6 assertthat_0.2.0 yaml_2.1.14 lazyeval_0.2.0
[17] rprojroot_1.2 digest_0.6.12 tibble_1.3.3 formatR_1.5
[21] glue_1.1.1 evaluate_0.10.1 rmarkdown_1.6 labeling_0.3
[25] stringi_1.1.5 compiler_3.4.1 scales_0.4.1 backports_1.1.0
[29] pkgconfig_2.0.1

7

